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Abstract. We study the dynamics of multipartite entanglement under decoherence induced by the envi-
ronment consisting of a fermionic bath. Based on the algebraic measure of entanglement-negativity, we
analyze the time evolution of entanglement of both pure states and mixed ones, and find that entangle-
ment evolution depends on both bath temperature and the number of qubits of the system. A linear space
SLDF which is dynamically decoupled from the environment is identified in the sense of linear entropy to
symbolize the environment effect.

PACS. 03.67.Mn Entanglement production, characterization and manipulation – 03.65.Yz Decoherence;
open systems; quantum statistical methods

1 Introduction

Entanglement is one key notion that distinguishes the
quantum and classical world, and it also plays an impor-
tant role in quantum information processing (QIP). A lot
of work has been carried out on entanglement both theo-
retically and experimentally [1–5] and it is a promising re-
source for future applications. One basic problem is how to
measure entanglement. We have a clear definition of mea-
sure of entanglement based on so-called concurrence [6] for
a 2×2 system, while for multipartite systems, the general
agreement [7] is that there is a lack of effective techniques
for calculating the optimization for mixed states, even
though they possess a physical interpretation. Recently,
based on the Peres’ separability criterion [8], Vidal et al.
introduced negativity [9] as a measure of entanglement,
which is the equivalent of concurrence when measuring
the entanglement of a 2×2 system, and by which one can
effectively compute the entanglement of both pure and
mixed states of an arbitrary bipartite system with high
dimensions.

The dynamics of entanglement is another interesting
problem and attracts considerable attention from physi-
cists for understanding the effect of environment on en-
tanglement. Generally speaking, entanglement dynamics
describes the behavior and features of the time evolution
of the measure of entanglement. Various models [10–13]
have been employed to investigate entanglement dynam-
ics based on so-called concurrence limited to a 2 × 2 sys-
tem. The multipartite system has not been modelled so
far, however, the multipartite system should receive more
attention due to the important role it plays in the applica-
tions of quantum computation. One of most recent works
concerning multipartite entanglement dynamics was de-
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veloped in [7], whose authors considered multipartite en-
tanglement dynamics based on generalized concurrence
limited to pure quantum states.

In the present paper, we first derive the time evolution
of the natural basis of a matrix in the system space under
the decoherence induced by the environment, consisting
of a fermionic bath. Then by using the negativity [9], we
can give the multipartite entanglement dynamics of states
either pure or mixed in principle. In particular, the en-
tanglement dynamics of the GHZ state and Werner state
[14] are discussed in detail. A linear space SLDF which
is dynamically decoupled from the environment has been
identified when we use linear entropy to symbolize the en-
vironment effect. Under a stronger condition, the state in
SLDF evolves unitarily and is therefore decoherence free.
The W state and the diagonal states are just such some ex-
amples. In principle, making use of our method, one can
research the entanglement dynamics and coherence evo-
lution for an arbitrary state in the multipartite systems,
either fermionic or bosonic under the decoherence induced
by the environment consisting of a fermionic bath.

2 Hamiltonian evolution

Here, we consider the model as a generalization of the
work [15] from a 2-qubit system to a multipartite system
while keeping the environment unchanged. The Hamilto-
nian of our model is H = Hs +HsB +HB, where Hs, HsB

and HB denote the Hamiltonian of the system, system-
bath interaction and bath respectively, and they read

Hs = −
n∑

i=1<j

ξijS
z
i S

z
j (1a)
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)
∑
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Sz
Bk (1b)
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HB = −w
∑

k

Sx
Bk − J
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k,k′
Sz

BkS
z
Bk′ (1c)

where ξij are the coupling constants between qubit i and
qubit j, n is the number of qubits in the system we con-
sider to be investigated. J0, J are exchange coupling con-
stants and ω is the strength of the transverse field. All of
them are non-negative constants. The indices of the sums
k, k′ run from 1 to N .

As is well-known, the state ρs for a n-qubit system can
always be expanded by using a natural basis E = {Eαβ},
where Eαβ = |α〉〈β| = |α1α2...αn〉〈β1β2...βn| with ev-
ery αi and βj taking values of 0 or 1, and the bit-string
α1α2...αn, β1β2...βn taken over all the possible permuta-
tions of 0 and 1

ρs =
∑

α,β

cαβEαβ . (2)

Assuming the bath density matrix to be a thermal distri-
bution ρB = (e−HB/T )/Z, with T the temperature mul-
tiplied by the Boltzman constant and Z = Tr(e−HB/T ),
we can write the general density matrix under this bath as
ρ(0) = ρs⊗ρB, where 0 denotes the initial time. Note that
we are only interested in the system density matrix evolu-
tion ρs(t), which can be obtained by tracing out the degree
of freedom of the environment. Thus, ρs(t) can come down
to the evolution of Eαβ with time, i.e.

ρs(t) =
∑

α,β

cαβEαβ(t) =
∑

α,β

cαβTrB{e−iHtEαβ ⊗ ρBeiHt}

(3)
where cαβ is a constant. Obviously,
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where

Hmf
B = −ω

∑

k

Sx
Bk − 2Jm

∑

k

Sz
Bk +m2JN (5)

which is the surrogate of HB under the mean field ap-
proximation (MF) [16], in order to eliminate the nonlin-
ear term in HB to obtain an analytical result for ρs(t).
In equation (5) m is the order parameter of the phase
transition. The absolute value of m ranges from 0 to 1/2
as long as the temperature ranges from the critical value
Tc = J/2 to 0. We obtain a Curie-Weiss equation in [16]
by using MF

J

Θ
= tanh

Θ
2T

(6)

where Θ = ±√
ω2 + 4m2J2. If we make the substitution

m → −m or Θ → −Θ, everything will remain for HB z
symmetry, so we take positive values of them for conve-
nience below. And thus

I ′ = t
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In equation (7), we have defined

nα = α1 + α2 + ...+ αn, nβ = β1 + β2 + ...+ βn. (8)

Thus we get the Eαβ(t) with the following expression for
N being large

Eαβ(t) =EαβAnβ−nα(t) exp

{
it
2

n∑

i=1<j

ξij

[
(−1)(αi+αj)

− (−1)(βi+βj)

]}
= Eα,βAnβ−nα(t)eiφt (9)

where
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φ =
1
2

n∑
i=1<j

ξij [(−1)(αi+αj) − (−1)(βi+βj)]

and the module of Anβ−nα(t)

|Anβ−nα | ≈ exp

(
− (nβ − nα)2t2J2

0m
2

2

(
J2

Θ2
−1

))
. (11)

Obviously, the time evolution of the density matrix can
be divided into two terms including a decay term Anβ−nα

induced by the environment and the term of phase factor
φ generated by the coupling between qubits.
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3 Entanglement dynamics

As above, we have obtained the final time-dependent re-
duced system density matrix ρs(t) via which the dynam-
ics of entanglement under decoherence can be understood
clearly. Here, we use the negativity [9] as a measure of en-
tanglement for its ease of computation. Given the system
density matrix ρs, the entanglement of ρs can be defined
as the negativity

N(ρs) =
‖ρTi

s ‖ − 1
2

(12)

which corresponds to the absolute value of the sum of neg-
ative eigenvalues of ρTi

s [17], and which vanishes for un-
entangled states. In equation (12), ‖ρTi

s ‖ means the sum
of absolute values of eigenvalues of ρTi

s , and ρTi
s which is

the partial transpose of ρs with respect to part i. Nega-
tivity is a measure of entanglement that can be computed
effectively for any pure or mixed state of an arbitrary bi-
partite system, and does not increase under LOCC (local
operation amended by classical communication) [9].

Negativity is used to quantify the degree to which ρTi
s

fails to be positive and represents the strength of quantum
correlation between part i and the sum of other compo-
nents of the system. According to [18,19], we can classify
the entanglement properties of a multipartite state by con-
sidering the different bipartitions of the system, so we can
use Nm:n−m to measure the strength of quantum corre-
lation between one group with m particles and the other
groups with n-m particles. Similarly, we can incorporate
this into the reduced density matrix obtained by tracing
over some subsystems. For example, in the case of a tri-
partite system with density matrix ρABC , there will be
6 splittings namely AB-C, BC-A, AC-B, and A-B, B-C,
A-C after tracing one subsystem. Any splitting of a mul-
tipartite system will have a negativity, so the number of
negativities equals that of splittings. So we can calculate
all the negativities to quantify the entanglement of any
state.

In practice, we are interested in some explicit exam-
ples. Here, we firstly consider the entanglement dynamics
of two types of initial pure states: the GHZ state and, the
W state, — which are known to bear incompatible mul-
tipartite correlations, in the sense that they can not be
transformed into each other by local operations and the
classical communication [19]. Secondly, we discuss the en-
tanglement evolution of Werner state as an example of a
mixed state under the environment.

Case 1. Let the initial system state be a n-qubit GHZ
state |ψn〉GHZ = (|00...0〉+ |11...1〉/√2. We label the neg-
ativity as N1:n−1 to quantify the quantum correlation be-
tween a single party and the remainder of n − 1 parties.
With equation (12), the negativities can be calculated eas-
ily for the highly symmetric structure of GHZ state and
we find that all the negativities between any party and
the remainder are the same with expression

N1:n−1 =
1
2

exp

[
− (2n)2t2J2

0m
2

8

(
J2

Θ2
− 1

)]
. (13)

Obviously, the entanglement shows an exponential decay
due to the system-bath interaction. Similarly, we can ob-
tain all the negativities N2:n−2 between a subsystem with
2 parties and the other subsystem with n− 2 parties and
find that all the negativities N2:n−2 take the same value
with N1:n−1. Furthermore all the negativities of any bi-
partition of n parties have the same value as that shown
in equation (13), i.e,

Nm:n−m = N1:n−1 =
1
2

exp

[
− (2n)2t2J2

0m
2

8

(
J2

Θ2
− 1

)]

(14)
where m is an integer which ranges from 1 to n/2 when n
is even, and 1 to (n− 1)/2 when n is odd. Such a re-
sult is of no surprise, because we can always consider
all the bipartitions of state ρs as the simplest example
|B〉 = (|uaub〉 + |dadb〉)/

√
2, where the sub-indices a, b

represent one group with m parties and the other group
with n-m parties. Now we should also consider the en-
tanglement properties of a reduced density matrix ρr ob-
tained by partial tracing over some subsystems. Because
of the fact that the partial tracing of some subsystems
from the system state ρGHZ will make the reduced matrix
ρr(t) possess no quantum correlation, the entanglement of
ρr(t) is 0. With the above analysis, for convenience, we
take N(t) which equals to Nm:n−m as the entanglement
evolution of the GHZ state and plot it in Figure 1.

As a first observation illustrated in the sub-figure
of Figure 1, the evolution of entanglement depends on
temperature; the lower the temperature of the bath is,
the longer the entanglement remains. We also find that
only in the limit t → ∞, will the entanglement van-
ish, that is ρGHZ(t → ∞) = (|00, ..., 00〉〈00, ..., 00| +
|11, ..., 11〉〈11, ..., 11|)/2 which is a completely separable
state. In the sub-figure of Figure 1, we find that the larger
the number of qubits a system consists of, the weaker the
negativity of system is under the environment.

Case 2. Compared to the entanglement of GHZ state,
the entanglement of a n-qubit W state is more compli-
cated. We can make some discussion about the influence
on W state imposed by the environment. When the initial
system state is a n-qubit W state,

|ψn〉W = (|00...01〉 + |00...10〉+ ...+ |10...00〉)/√n. (15)

Thus the density matrix of W state has the expression
ρW (0) =

∑
α,β

(1/n)Eα,β , and the time-dependent reduced

density matrix can be expressed as

ρW (t) =
∑

α,β

1
n
Eα,βAnβ−nα(t)eiφt (16)

where φ = (1/2)
n∑

i=1<j

ξij [(−1)(αi+αj) − (−1)(βi+βj)]. Ob-

viously, nα = nβ for W state, so Anβ−nα(t) = A0(t) = 1,
and

ρW (t) =
∑

α,β

1
n
Eα,βeiφt. (17)
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Fig. 1. N(t) versus the scaled time J0t. The left sub-figure illustrates the entanglement evolution of given GHZ states with
five qubits under different temperatures and the right one describes the evolution of entanglement of GHZ state with different
number of qubits under a certain temperature T/TC = 0.35 respectively. J = 2, ω = 0.1.

It is easy to find that the environment does not affect the
system state, but the coupling between qubits induces the
phase factor φ in the reduced density matrix. Note the fact
that the calculation of entanglement of W state of multi-
partite system is a complicated task; here, we just make
some discussion about the properties of entanglement evo-
lution of the W state. Since the fact that Anβ−nα = 1 and
the phase factor φ 	= 0, the entanglement will not van-
ish but oscillate or remain constant. If all of the coupling
constants between qubits take the same value ξ0, then the
phase factor φ will vanish and the W state will remain un-
changed, so entanglement will be unchanged for all time.

Case 3. We will pick out one mixed state, i.e., a
n-qubit Werner state

ρWerner =
(1 − p) I

2n
+ p|φ±〉〈φ±|

where p is a real parameter which ranges from 0 to 1,
I is an identity matrix with 2n dimensions, and |φ±〉 =
(|00...0〉 ± |11...1〉)/√2. Through a similar calculation, we
get the entanglement time evolution of any bipartition
between a single party and the remainder of n− 1 parties
with the same expression as

N1:n−1 =
p

2
exp

[
− (2n)2t2J2

0m
2

8

(
J2

Θ2
− 1
)]

− 1 − p

2n
.

(18)
Since negativity is a positive value, equation (18) holds
only under the condition

p

2
exp

[
− (2n)2t2J2

0m
2

8
(
J2

Θ2
− 1)

]
>

1 − p

2n

otherwise, the entanglement is 0. Similar to that of GHZ
state, the entanglement evolution of a Werner state with
any bipartition m:n-m takes the same value as N1:n−1,
while, any reduced matrix of a Werner state after tracing

one or more subsystems is a completely separable density
matrix. Therefore we take N(t) to be the same expres-
sion of N1:n−1 in equation (18) as the entanglement evo-
lution of a Werner state. The entanglement dynamics of
the Werner state is illustrated in Figure 2 where we can see
the entanglement evolution behavior under changing en-
vironment. Obviously, the entanglement of a Werner state
evolves differently from that of GHZ state, with regards
to the Werner state, a finite time is needed to corrupt the
entanglement; while for the GHZ state, the time taken for
entanglement destruction is infinite. In this sense, we can
say the Werner state is weaker than the GHZ state in our
model.

In principle, we can give the entanglement evolution of
any n-qubit system state under the environment, taking
the complexity of the calculation into account. Here we
omit other examples.

4 Decoherence-free linear space

The results of case (2) in Section 3 imply that some states
with special symmetry such as the W state will not be af-
fected by the environment. Finding out the class of states
which do not perceive the environment is an interesting
problem.

Generally, the mixed states as well as pure states will
decohere when exposed to the environment. Here, we con-
sider the general case of either a pure or a mixed system
state exposed to the environment. As we know, usually
pure states will become mixed when interacting with the
environment, and the mixed states become more mixed
than ever for the system-bath interaction; thus, we can
use the evolution of purity of a state to estimate the deco-
herence under the environment. A proper candidate used
to measure the effect of the environment on the system
is linear entropy [20]. Linear entropy has been applied to
measure both entanglement and decoherence for different
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Fig. 2. N(t) of Werner state versus the scaled time J0t. The left sub-figure describes the entanglement time evolution of a
Werner state with five qubits under different bath temperatures, and the time evolution of entanglement of Werner state with
different qubits under a fixed bath temperature T/TC = 0.35 is illustrated on the right sub-figure. p = 1/2, J = 2, ω = 0.1.

perspectives. In view of the specific form of linear entropy,
it is a function of purity of state and the purity is a reli-
able expression to represent the effect of the environment;
so linear entropy is often used to measure decoherence. A
similar study has been carried out on decoherence by us-
ing linear entropy in [21,22]. In this paper, we will employ
linear entropy to estimate the decoherence of the multi-
qubit system in a fermionic environment. From the results
above, we find the decoherence-free linear space defined as
SLDF of our model.

Lemma. SLDF is a linear space such that ev-
ery element in it can be expanded by the set
of basis EDF = {Eζη} and nζ = nη, where
Eζη = |ζ〉〈η| = |ζ1ζ2...ζn〉〈η1η2...ηn| with every ζi and ηj

taking values of 0 or 1, the bit-string ζ1ζ2...ζn, η1η2...ηn

taken over all the possible permutations of 0 and 1, and
nζ = ζ1 + ζ2 + ...+ ζn, nη = η1 + η2 + ...+ ζn.

Proof. Since nζ = nη, we get Anη−nζ
(t) = 1, and thus

Eζη(t) = Eζη

× exp

⎧
⎨

⎩
it
2

n∑

i=1<j

ξij

[
(−1)(ζi+ζj) − (−1)(ηi+ηj)

]
⎫
⎬

⎭ (19)

where ζ1, ζ2, ..., ζn, η1, η2, ..., ηn take values 0 or 1, then we
can express the time evolution of basis Eζη(t) as

Eζη(t) = Eζηeiφt (20)

where φ =
n∑

i=1<j

ξij [(−1)(ζi+ζj) − (−1)(ηi+ηj)] is a real

phase factor, and thus

Eηζ(t) = Eηζe−iφt. (21)

Obviously, the effect induced by coupling between qubits
on a state belonging to SLDF is only the production of a

real phase factor, and the amplitude of basisEDF is invari-
ant under the environment. Since any state density matrix
can be expanded by the set of basis EDF ρs =

∑
ζ,η

cζηEζη

thus the linear entropy of the time-dependent expression
can be given as

S(t) = 1 − Tr(ρ2
s(t)) = 1 −

∑

ζ,η

|cζη|2 = S(0). (22)

So in the sense of linear entropy used to express the en-
vironment effect, we can conclude that the linear space
SLDF is decoherence free. The proof is completed.

With the lemma, we can say that a state density ma-
trix which can expanded by the set of basis EDF does not
perceive the presence of the environment in the sense of
linear entropy to estimate decoherence. In contrast, any
other state which cannot be expanded by the set of basis
EDF will decohere in general and become a state belong-
ing to SLDF after a long time under the environment, since
the module Anη−nζ

when η 	= ζ is an exponential decay
with time.

As an example, we consider the n-qubit W state
|ψn〉W = (|00...01〉 + |00...10〉 + ... + |10...00〉)/√n as the
initial system state. Since the W state can be expanded
by the set of basis EDF , thus, the linear entropy of W
state will be invariant under the decoherence induced by
the environment, i.e., S(ρW (t)) = S(ρW (0)). In the sense
of linear entropy as a measure of decoherence, we can see
that the W state is free from the environment.

Likewise, we can also check that the mixtures of the
diagonal states such as the W state do not perceive the
presence of the environment because such mixed states are
still able to be expanded by the set of basis EDF . Here,
the diagonal states mean one class of states whose density
matrices are diagonal.

In particular, when all the ξij take the same value
ξ0 which is a constant, any state in SLDF will keep in-
variant under the environment and a series of completely
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decoherence-free subspaces [23–25] can be found. They are
defined as Snα constructed by orthogonal quantum states
with the same value of nα, and the dimension of Snα is
n!/[nα!(n − nα)!]. For example, Sn is constructed by one
element |11, ..., 1〉. Any pure state of the subspace Snα

can be expanded by the basis of Snα , therefore, the pure
states belonging to Snα do not perceive the presence of
the environment. Our result as a particular instance is
consistent with the well established theory on decoher-
ence free subspaces and it is important for us to deal with
error correction. Information is encoded in subspaces Snα

(codes) of the total Hilbert space in a way that errors in-
duced by the interaction with the bath can be detected
and corrected. The important point is that the detection
of errors, if they belong to the class of errors correctable
by the given code, should be performed without gaining
any information about the actual state of the computing
system prior to decoherence.

5 Conclusion

Based on the use of negativity as a measure of entan-
glement, we have studied the entanglement dynamics of
multipartite-qubit system with an initial state either pure
or mixed in a symmetry-broken environment. Notably,
we analyze the entanglement dynamics of GHZ state and
Werner state in detail, and find that the time to corrupt
the entanglement of them is completely different. For GHZ
state, the time is infinite, while the environment can re-
move the entanglement of a Werner state in a very limited
time. Our model resembles some selected atoms interact-
ing with a spin-like bath consisting of a larger number of
two-level Rydberg atoms.

Due to the system-bath interaction, and noting that
the module of Anβ−nα is an exponential decay, the states
which cannot be expanded by the set of basis of EDF

will lose coherence in general and become states belonging
to the linear space SLDF . Any other state which can be
expanded by the set of basis of EDF does not perceive the
presence of the environment in the sense of linear entropy
to measure decoherence. Thus we are allowed, in principle,
to design noiseless quantum codes which are of importance
in QIP. The entanglement dynamics not only depends on
the bath temperature, but also on the number of qubits
of the system.

Our research can be also applied to multipartite sys-
tems with high dimensions under a spin-like environment,
so this paper will shed some light on the entanglement
dynamics and decoherence of multipartite system either
fermionic or bosonic with high dimensions. In the end,
we think that our analysis will contribute to a better un-

derstanding of entanglement dynamics and decoherence of
multipartite systems.
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